
Scalaris: Reliable Transactional P2P Key/Value Store
Web 2.0 Hosting with Erlang and Java

Thorsten Schütt Florian Schintke Alexander Reinefeld
Zuse Institute Berlin and onScale solutions

schuett@zib.de, schintke@zib.de, reinefeld@zib.de

Abstract
We present Scalaris, an Erlang implementation of a distributed
key/value store. It uses, on top of a structured overlay network,
replication for data availability and majority based distributed
transactions for data consistency. In combination, this implements
the ACID properties on a scalable structured overlay.

By directly mapping the keys to the overlay without hashing, ar-
bitrary key-ranges can be assigned to nodes, thereby allowing a bet-
ter load-balancing than would be possible with traditional DHTs.
Consequently, Scalaris can be tuned for fast data access by taking,
e.g. the nodes’ geographic location or the regional popularity of
certain keys into account. This improves Scalaris’ lookup speed in
datacenter or cloud computing environments.

Scalaris is implemented in Erlang. We describe the Erlang soft-
ware architecture, including the transactional Java interface to ac-
cess Scalaris.

Additionally, we present a generic design pattern to implement
a responsive server in Erlang that serializes update operations on
a common state, while concurrently performing fast asynchronous
read requests on the same state.

As a proof-of-concept we implemented a simplified Wikipedia
frontend and attached it to the Scalaris data store backend. Wiki-
pedia is a challenging application. It requires—besides thousands
of concurrent read requests per seconds—serialized, consistent
write operations. For Wikipedia’s category and backlink pages,
keys must be consistently changed within transactions. We dis-
cuss how these features are implemented in Scalaris and show its
performance.

Categories and Subject Descriptors C.2.4 [Distributed Sys-
tems]: Distributed databases; C.2.4 [Distributed Systems]: Dis-
tributed applications; D.2.11 [Software architectures]: Patterns;
E.1 [Data structures]: Distributed data structures

General Terms Algorithms, Design, Languages, Management,
Reliability

Keywords Wikipedia, Peer-to-Peer, transactions, key/value store

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’08, September 27, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-065-4/08/09. . . $5.00

1. Introduction
Global e-commerce platforms require highly concurrent access to
distributed data. Millions of read operations must be served within
milliseconds even though there are concurrent write accesses. En-
terprises like Amazon, eBay, Myspace, YouTube, or Google solve
this problems by operating tens or hundreds of thousands of servers
in distributed datacenters. At this scale, components fail continu-
ously and it is difficult to maintain a consistent state while hiding
failures from the application.

Peer-to-peer protocols provide self-management among peers,
but they are mostly limited to write-once/read-many data sharing.
To extend them beyond the typical file sharing, the support of con-
sistent replication and fast transactions is an important yet missing
feature.

We present Scalaris, a scalable, distributed key/value store.
Scalaris is built on a structured overlay network and uses a dis-
tributed transaction protocol, both of them implemented in Erlang
with an application interface to Java. To prove our concept, we im-
plemented a simple Wikipedia clone on Scalaris which performs
several thousand transactions per second on just a few servers.

In this paper, we give details on the design and implementation
of Scalaris. We highlight Erlang specific topics and illustrate algo-
rithm details with code samples. Talks on Scalaris were given at
the IEEE International Scalable Computing Challenge 20081, the
Google Scalability Conference 2008 [15] and the Erlang eXchange
2008.

The paper is organized as follows. After a brief review of related
work we describe the overall system architecture and then discuss
implementation aspects in Section 4. In Section 5, we present a
generic design pattern of a responsive, stateful server, which is used
in Scalaris. We then present our example application, a distributed
Wikipedia clone in Section 6 and we end with a conclusion.

2. Related Work
Scalable, transactional data stores are of key interest to the com-
munity and hence there exists a wide variety of related work. Ama-
zon’s key/value store Dynamo [3] and its commercial counterpart
SimpleDB which is used in the S3 service, are similar to our work,
because they are also based on a scalable P2P substrate. But in con-
trast to Scalaris, they implement only eventual consistency rather
than strong consistency. Moreover, Dynamo does not support trans-
actions over multiple items.

The work of Baldoni et al. [2] focuses on algorithms for the
creation of dynamic quorums in P2P overlays—an issue that is of
particular relevance for the transaction layer in Scalaris. They show
that in P2P systems the quorum acquisition time and the message
latency are more important than the quorum size, which has been

1 Scalaris won the 1st price at SCALE 2008, www.ieeetcsc.org/scale2008

41

Application Layer

Transaction Layer implements ACID

crash
recovery
model Scalaris: Key/Value Store (= simple database) strong data consistency

P2P Layer
crash stop

model

Transaction Layer

implements
- scalability
- eventual consistency

improves availability
at the cost of consistency

implements ACID

Replication Layer

unreliable, distributed nodes

Figure 1. Scalaris system architecture.

traditionally used as a performance metric in distributed systems.
This is in line with our results showing that an increasing replica-
tion degree r only marginally affects the access time, because the
replicas residing in the d(r + 1)/2e fastest nodes take part in the
consensus process.

Masud et al. [10] also discuss database transactions on struc-
tured overlays, but with a focus on the consistent execution of trans-
actions in the presence of failing nodes. They argue that executing
transactions over the acquaintances of peers speeds up the transac-
tion time and success rate. Scalaris has a similar concept, but here
the peer ‘acquaintances’ are realized by the load balancer.

With Cassandra [8] and Megastore [4], Facebook and Google
recently presented two databases based on the P2P paradigm.
Megastore extends Bigtable with support of transactions and multi-
ple indices. Cassandra is more similar to Dynamo as it also provides
eventual consistency.

3. System Architecture
Scalaris is a distributed key/value store based on a structured P2P
overlay that supports consistent writes. The system comprises three
layers (Fig. 1):

• At the bottom, a structured overlay network with logarithmic
routing performance builds the basis for the key/value store. In
contrast to many other DHTs, our overlay stores the keys in lex-
icographical order, hence efficient range queries are possible.

• The middle layer implements replication and ACID proper-
ties (atomicity, concurrency, isolation, durability) for concur-
rent write operations. It uses a Paxos consensus protocol [9]
which is integrated into the overlay protocol to ensure low com-
munication overhead.

• The top layer hosts the application, a distributed key/value
store. This layer can be used as a scalable, fault-tolerant back-
end for online services for shopping, banking, data sharing, on-
line gaming, or social networks.

Fig. 1 illustrates the three layers. The following sections de-
scribe them in more detail.

3.1 P2P Overlay
At the bottom layer, the structured overlay protocol Chord# [13,
14] is used for storing and retrieving key/value pairs in nodes
(peers) that are arranged in a virtual ring. In each of the N nodes,
Chord# maintains a routing table with O(log N) entries (fingers).
In contrast to Chord [17], Chord# stores the keys in lexicograph-
ical order, thereby allowing range queries. To ensure logarithmic

Leader

replicated
Transaction
Managers

(TMs)

Items at
Transaction
Participants

(TPs)

1. Step

2. Step

3. Step

4. Step

5. Step

6. Step

After majority

After majority

Figure 2. Adapted Paxos used in Scalaris.

routing performance, the fingers in the routing table are computed
in such a way that successive fingers in the routing table cross an
exponentially increasing number of nodes in the ring.

Chord# uses the following algorithm for computing the fingers
in the routing table (the infix operator x . y retrieves y from the
routing table of a node x):

finger i =

successor : i = 0
finger i−1 . finger i−1 : i 6= 0

Thus, to calculate the ith finger, a node asks the remote node
listed in its (i − 1)th finger to which node his (i − 1)th finger
refers to. In general, the fingers in level i are set to the fingers’
neighbors in the next lower level i − 1. At the lowest level, the
fingers point to the direct successors. The resulting structure is
similar to a skiplist, but the fingers are computed deterministically
without any probabilistic component.

Compared to Chord, Chord# does the routing in the node space
rather than the key space. This finger placement has two advantages
over that of Chord: First, it works with any type of keys as long as
a total order over the keys is defined, and second, finger updates
are cheaper, because they require just one hop instead of a full
search (as in Chord). A proof of Chord#’s logarithmic routing
performance can be found in [13].

3.2 Replication and Transaction Layer
The scheme described so far provides scalable access to distributed
key/value pairs. To additionally tolerate node failures, we replicate
all key/value pairs over r nodes using symmetric replication [5].
Read and write operations are performed on a majority of the
replicas, thereby tolerating the unavailability of up to b(r − 1)/2c
nodes.

Each item is assigned a version number. Read operations select
the item with the highest version number from a majority of the
replicas. Thus a single read operation accesses d(r + 1)/2e nodes,
which is done in parallel.

Write operations are done with an adapted Paxos atomic commit
protocol [11]. In contrast to the 3-Phase-Commit protocol (3PC)
used in distributed database systems, the adapted Paxos is non-
blocking, because it employs a group of acceptors rather than a

42

replica group0

replica group1

replica group2

replica group3

replica group4

de

en

nl

se

de

en

nl

se
de

en

nl

se

de

en

nl

se

de
ennl

se

de:Main Page

Figure 3. Symmetric replication and multi-datacenter scenario. By
assigning the majority of the ‘de’-, ‘nl’-, and ‘se’-replicas to nodes
in Europe, latencies can be reduced.

single transaction manager. We select those nodes as acceptors
that are responsible for symmetric replication of the transaction
manager. The group of acceptors is determined by the transaction
manager just before the prepare request is sent to the transaction
participants (Fig. 2). This gives a pseudo static group of transaction
participants at validation time, which is contacted in parallel.

Write operations and transactions need three phases, including
the phase to determine the nodes that participate in the atomic
commit. For details see [11, 16].

In Scalaris, the adapted Paxos protocol serves two purposes:
First it ensures that all replicas of a single key are updated con-
sistently, and second it is used for implementing transactions over
multiple keys, thereby realizing the ACID properties (atomicity,
concurrency, isolation, durability).

3.3 Deployment in Global Datacenters
While we also tested Scalaris on globally distributed servers using
PlanetLab2, its deployment in globally distributed datacenters is
more relevant for international service providers. In such scenarios,
the latency between the peers is roughly the same and the peers are
in general more reliable.

When deploying Scalaris in multi-datacenter environments, a
single structured overlay will span over all datacenters. The lo-
cation of replicas will influence the access latency and thereby
the response time perceived by the user. As Chord# supports ex-
plicit load-balancing, it can—besides adapting to e.g. heteroge-
neous hardware and item popularity—place the replicas in specific
centers. A majority of replicas of German Wiki pages, for exam-
ple, should be placed in European datacenters to reduce the access
latency for German users.

Scalaris uses symmetric replication [5]. Here, a key ‘de:Main
Page’ is stored in five different locations in the ring (see Fig. 3).
The locations are determined by prefixing the key with ‘0’, ‘1’,
..., ‘5’. So the key of the third replica is ‘2de:Main Page’ and the
third replicas of all German articles will populate a consecutive
part of the ring. By influencing the load-balancing strategy we
can guarantee this segment to be always hosted in a particular
datacenter.

2 http://www.planet-lab.org

One-for-one

supervision

Failure Detector

Configuration

KeyHolder

Statistics Collector

All-for-one

supervision
Chord# Node

Database

Routing Table

Load Balancer

Mod. Paxos

PaxosTransaction

Managers

Figure 4. Supervisor tree of a Scalaris node. Each box represents
one process.

4. Erlang Implementation
The actor model [7] is a popular model for designing and imple-
menting parallel or distributed algorithms. It is often used in the lit-
erature [6] to describe and to reason about distributed algorithms.
Chord# and the transaction algorithms described above were also
developed according to this model. The basic primitives in this
model are actors and messages. Every actor has a state, can send
messages, act upon messages and spawn new actors.

These primitives can be easily mapped to Erlang processes and
messages. The close relationship between the theoretical model
and the programming language allows a smooth transition from
the theoretical model to prototypes and eventually to a complete
system.

Our Erlang implementation of Scalaris comprises many compo-
nents. It has a total of 11,000 lines of code: 7,000 for the P2P layer
with replication and basic system infrastructure, 2,700 lines for the
transaction layer, and 1,300 lines for the Wikipedia infrastructure.

4.1 Components and Supervisor Tree
Scalaris is a distributed algorithm. Each peer runs a number of
processes as shown in Fig. 4:

Failure Detector supervises other peers and sends a crash mes-
sage when a node failure is detected.

Configuration provides access to the configuration file and main-
tains parameter changes made at runtime.

Key Holder stores the identifier of the node in the overlay.

Statistics Collector collects statistics and forwards them to central
statistic servers.

Chord# Node performs all important functions of the node. It
maintains, among other things, the successor list and the routing
table.

Database stores the key/value pairs of this node. The current
implementation uses an in-memory dictionary, but disk store
based on DETS or Mnesia could also be used.

The processes are organized in a supervisor tree as illustrated
in Fig. 4. The first four processes are supervised by a one-for-
one supervisor [1]: When a slave crashes, it is restarted by the
supervisor. The right-most processes (Chord# Node and Database)
are supervised by an all-for-one supervisor which restarts all slaves
when a single slave crashed. In Scalaris, when either of the Chord#

Node or the Database process fails, the other is explicitly killed and
both are restarted to ensure consistency.

43

4.2 Naming Processes
In Erlang, there are two ways of sending messages to processes: by
process id or by addressing the name registered as an atom. This
scheme provides a flat name space. We implemented a hierarchical
name space for processes.

As described in Sec. 4.1, each Chord# node comprises a group
of processes. Within this group, we address processes by name. For
example, the failure detector can be addressed as failure detector.

Running several Chord# nodes within one Erlang Virtual Ma-
chine (VM) would lead to name clashes. Hence, we implemented a
hierarchical process name space where each Chord# node forms
a ‘process group’. As a side-effect, we can traverse the naming
hierarchy to provide monitoring information grouped by Chord#

nodes.
For this naming scheme, every process stores its group id in

its own process dictionary. At startup time, processes announce
their name and process identifier to a dictionary inside the VM,
which is handled by a separate process in the VM. It can be queried
to find processes by name or by traversing the process hierarchy.
Additionally, most Chord# processes support the {’$gen cast’,
{debug info, Requestor}} message, which allows processes to
provide custom monitoring information to the web interface.

4.3 WAN Deployment
Erlang provides the ‘distributed mode’ for small and medium de-
ployments with limited security requirements. This makes it easy
to port the application from an Erlang VM to a cluster. In large de-
ployments, however, the network traffic caused by the management
tasks within the VM dominates the overall traffic.

In our code, we replaced the ‘!’ operator and the self() function
by cs send:send() resp. cs send:this(). At compile time we can
configure the cs send module to use the Erlang distributed mode or
our own transport layer using TCP/IP, which will be based on the
Erlang SSL library in the future.

This approach also allows us to separate the application logic
from the transport layer. Hence, NAT traversal schemes and firewall-
aware communication can be implemented without the need to
change Chord# code.

4.4 Transaction Interface
Transactions are executed in two phases, the read phase and the
commit phase. The read phase goes through all operations of the
transaction and keeps the result of each operation in the transac-
tion log. During this phase, the state of the system remains un-
changed. In the commit phase, the recorded effects are applied to
the database when the ACID properties are not violated.

Read phase. For the read phase, we use a lambda expression
which describes the individual operations to be performed in the
transaction (see Alg. 4.1). The mentioned transaction log is passed
through all calls to the transaction API and updated accordingly.
Passing a function to the transaction framework allows us to easily
re-execute a transaction after a failure due to concurrency.

Commit phase. The commit phase is started by calling do trans-
action (see last line in Alg. 4.1). The transaction is executed asyn-
chronously. The function spawns a new process and returns im-
mediately. The ProcessId which is passed will be notified of the
outcome of the transaction. The SuccessFun resp. FailureFun are
applied to the result of the transaction before the result is sent back.
For the Scalaris implementation, we use the two functions to in-
clude transaction numbers into the status messages when a process
has several outstanding transactions.

We use the Jinterface package to enable Java programs to per-
form transactions. The transaction log is managed by the Java pro-
gram. On a commit the complete log is passed to Erlang and the

Algorithm 4.1 Incrementing the key Increment inside a transaction

run test increment(State, Source PID)->
% the transaction
TFun = fun(TransLog) ->

Key = ”Increment”,
{Result, TransLog1} = transaction api:read(Key, TransLog),
{Result2, TransLog2} =

if Result == fail ->
Value = 1, % new key
transaction api:write(Key, Value, TransLog);

true ->
{value, Val} = Result, % existing key
Value = Val + 1,
transaction api:write(Key, Value, TransLog1)

end,
% error handling
if Result2 == ok ->

{{ok, Value}, TransLog2};
true -> {{fail, abort}, TransLog2}

end
end,
SuccessFun = fun(X) -> {success, X} end,
FailureFun =

fun(Reason)-> {failure, ”test increment failed”, Reason} end,

% trigger transaction
transaction:do transaction(State, TFun, SuccessFun,

FailureFun, Source PID).

Algorithm 4.2 Java Transactions

// new Transaction object
Transaction transaction = new Transaction();
// start new transaction
transaction.start();

//read account A
int accountA =

new Integer(transaction.read(”accountA”)).intValue();
//read account B
int accountB =

new Integer(transaction.read(”accountB”)).intValue();

//remove 100$ from accountA
transaction.write(”accountA”,

new Integer(accountA - 100).toString());
//add 100$ to account B
transaction.write(”accountB”,

new Integer(accountB + 100).toString());

transaction.commit();

do transaction function. Note that transaction descriptions in Java
are usually more compact because error handling is done using ex-
ceptions (see Alg. 4.2) while in Erlang, the error handling is done
in the actual code.

5. Responsive, Stateful Server in Erlang
In distributed server software, slow write operations often block
faster reads. Alg. 5.1 shows a generic server architecture (design
pattern) that manages reads and writes on a shared state separately.
This is done in such a way that read requests can be immediately
answered even though a concurrent write operation still blocks the
process. Two processes manage the shared state: a public asyn-

44

Algorithm 5.1 Responsive, stateful server

-module(account).
-export([start/0,syncloop/2,slowbalance/2]).

newAccount() -> 0.
start() -> spawn(fun() ->

Account = newAccount(),
SyncLoopPid = spawn(account, syncloop, [self(), Account]),
asyncloop(SyncLoopPid, Account)

end).

% all requests have to be send to the asyncloop
% read from State via spawns, if its a slow read
% forward writes to the syncloop
asyncloop(SyncLoopPid, State) ->

receive
{updatestate, StateNew} ->

% for better consistency make a join for all spawned
% slow reads here
% for better security, only allow the syncloop
% process to update the state
asyncloop(SyncLoopPid, StateNew);

{balance, Pid} ->
Pid ! State,
asyncloop(SyncLoopPid, State);

{slowbalance, Pid} ->
spawn(account, slowbalance, [State, Pid]),
asyncloop(SyncLoopPid, State);

% all other messages go to the synchronous loop
Message ->

SyncLoopPid ! Message,
asyncloop(SyncLoopPid, State)

end.

% internally use a syncloop to serialize all State changes
syncloop(AsyncLoopPid, State) ->

receive
{credit, Amount} ->

NewState = State + Amount,
AsyncLoopPid ! {updatestate, NewState},
syncloop(AsyncLoopPid, NewState);

{draw, Amount} ->
NewState = State - draw(Amount),

AsyncLoopPid ! {updatestate, NewState},
syncloop(AsyncLoopPid, NewState);
->
syncloop(AsyncLoopPid, State)

end.

% functions, that take some time to be executed
slowbalance(State, Pid) ->

receive
after 60000 ->

Pid ! State
end.

draw(Amount) ->
receive
% the bank still works with your money for 10 seconds
after 10000 ->

Amount
end.

chronous receive loop asyncloop that performs the reads and for-
wards the write requests to a private synchronous receive loop syn-
cloop. By this means, write requests are serialized and there is a
local atomic point in time when the state changes.

Slow reads may still deliver outdated state. This can be over-
come by waiting for all outstanding reads to be completed before
changing the state in the asyncloop (not depicted in the algorithm).

Example. Alg. 5.1 shows the processing of states for a bank ac-
count. The server provides two read requests (balance and slow-
balance) and two write requests (credit and draw) for managing an
account. Clients send all their requests to the asyncloop. The server
is started by calling account:start(). This spawns a process, which
first initializes the account with zero, spawns the syncloop with a
reference to itself, and finally executes the asyncloop.

On a balance or slowbalance request to the asyncloop, the ac-
count balance is returned to the requesting process from the current
state. In case of slowbalance the state is given to a spawned process,
which is then executed concurrently in the background. In practice,
this spawning should be used when some calculations or other time
consuming tasks must be executed on the state before the request
can be answered. This way, other requests can be performed by the
server concurrently. Here, the corresponding function slowbalance
just waits 60 seconds before delivering the result.

In addition, the asyncloop handles updatestate requests as
discussed below. All other messages are forwarded to the syncloop.

The syncloop handles the write requests credit and draw. All
other messages are ignored and dropped. The syncloop must not
spawn processes to calculate state changes, as all state manipulation
must be serial to ensure consistency. Here, the draw takes 10
seconds to be performed (the bank uses this time to work with your
money). This time has to be consumed synchronously. In practice
this could be a time consuming calculation which is necessary to
determine the new state. After having calculated the new state,
syncloop sends the state with an updatestate request to the async-
loop and works on the new state by itself.

When the asyncloop receives an updatestate message from the
syncloop it takes over the new state from the message. This is the
atomic point in time when the write request becomes active, as all
future requests will operate on this new state.

This leads to a relaxed consistency in the server that is sufficient
for updating the routing tables and successor lists. Here, relaxed
consistency does not harm, because these tables are subject to churn
and will be periodically updated with unreliable link information
anyway. If a stronger consistency model is needed, the transaction
mechanism of the Erlang Mnesia database package could be used.

6. Use Case: Wikipedia
To demonstrate Scalaris’ performance, we chose Wikipedia, the
‘free encyclopedia, that anyone can edit’, as a challenging test
application. In contrast to the public Wikipedia, which is operated
on three clusters in Tampa, Amsterdam, and Seoul, our Erlang
implementation can be deployed on worldwide distributed servers.
We ran it in two installations, one on PlanetLab and one on a local
cluster.

The public Wikipedia uses PHP to render the Wikitext to HTML
and stores the content and page history in MySQL databases. In-
stead of using a relational database, we map the Wikipedia content
to our Scalaris key/value store [12]. We use the following map-
pings, using prefixes in the keys to avoid name clashes:

key value

page content title list of Wikitext for
all versions

backlinks title list of titles

categories category name list of titles

45

Figure 6. Screenshot of the Bavarian Wikipedia on Scalaris. Images are not included in the dump.

HTTP Load Balancer

Client

Request for page A Page A

Replica of page AWebserver

Chord#,
replication,
and transactions
written in Erlang

HTTP

Figure 5. Wikipedia on Scalaris.

The page rendering of the Wikitext is done in Java in the web
servers (see Fig. 5) running jetty. Here, we modified the Wikitext
renderer of the plog4u project for our purposes.

Using this data layout, users may view pages by typing the
URL, they can navigate to other pages via hyperlinks, they can edit
pages and view the history of changes, and create new pages (see

the screenshot in Fig. 7). Since the Wikipedia dumps do not include
images, we render a proxy image at the corresponding positions
instead. Moreover, we do not maintain a full text index and there-
fore full text search is not supported by our implementation. This
could easily be performed by external crawling and search indexing
mechanisms.

When modifying a page, a transaction over all replicas of the
responsible keys is created and executed. The transaction includes
the page itself, all backlink pages for inserted and deleted links, and
all category pages for inserted and deleted categories.

Performance. Our Erlang implementation serves 2,500 transac-
tions per second with just 16 servers. This is better than the pub-
lic Wikipedia, which serves a total of 45,000 requests per second,
of which only 2,000 hit the backend of approx. 200 servers. For
the experiments, we used a HTTP load balancer (haproxy) to dis-
tribute the requests over all participating servers. The load gener-
ator (siege) requested randomly selected pages from the load bal-
ancer.

7. Conclusion
We presented Scalaris, a distributed key/value store based on the
Chord# structured overlay with symmetric data replication and a
transaction layer implementing ACID properties. With Wikipedia
as a demonstrator application we showed that Scalaris provides the
desired scalability and efficiency.

Our implementation greatly benefited from the use of Er-
lang/OTP. It provides a set of useful libraries and operating pro-
cedures for building reliable distributed applications. As a result,
the code is more concise than C or Java code.

Additionally, we presented an Erlang pattern that implements
responsive, stateful services by overlapping fast reads with concur-

46

rent synchronous (slower) write operations. This framework did not
only prove useful in our key/value store, but it can be used in many
other Erlang implementations.

We believe that Scalaris could be of great value for suppliers
of online services such as Amazon, eBay, Myspace, YouTube,
or Google. Today, global service providers face the challenge of
ensuring consistent data access for millions of customers in a 24/7
mode. In such environments, system crashes, software faults and
heavy load imbalances are the norm rather than exceptions. Here,
it is a challenging task to maintain a consistent view on data and
services while hiding failures from the application.

Our P2P approach with replication and ACID provides a de-
pendable and scalable alternative to standard database technology,
albeit with a reduced data model. Each additional peer contributes
additional main memory to the system, hence the combined mem-
ory capacity resembles that of current (large) SAN storage systems.
If this is not sufficient, Scalaris can be easily modified to write its
data onto disk. For backup purposes, our ACID implementation al-
lows to take consistent snapshots of all data items during runtime.

Apart from distributed transactional data management, Scalaris
can also be used for building scalable, hierarchical pub/sub ser-
vices, reliable resource selection in dynamic systems, or internet
chat services.

Acknowledgments
Many thanks to Joe Armstrong for commenting on our responsive
server code and to Nico Kruber for implementing the Java transac-
tion interface and adapting the Wiki renderer. This work was partly
funded by the EU project Selfman under grant IST-34084 and the
EU project XtreemOS under grant IST-33576.

References
[1] J. Armstrong. Programming Erlang: Software for a Concurrent World.

Pragmatic Programmers, ISBN: 978-1-9343560-0-5, July 2007

[2] R. Baldoni, L. Querzoni, A. Virgillito, R. Jiménez-Peris, and M. Patiño-
Martı́nez. Dynamic Quorums for DHT-based P2P Networks. NCA,
pp. 91–100, 2005.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s Highly Available Key-Value Store Proceedings of the 21st
ACM Symposium on Operating Systems Principles, Oct. 2007.

[4] JJ Furman, J. S. Karlsson, J. Leon, A. Lloyd, S. Newman, and
P. Zeyliger. Megastore: A Scalable Data System for User Facing
Applications. SIGMOD 2008, Jun. 2008.

[5] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for
Structured Peer-to-Peer Systems. 3rd Intl. Workshop on Databases,
Information Systems and P2P Computing, 2005.

[6] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag 2006.

[7] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. IJCAI, 1973.

[8] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A Structured
Storage System on a P2P Network. SIGMOD 2008, Jun. 2008.

[9] L. Lamport. Fast Paxos. Distributed Computing 19(2):79–103, 2006.

[10] M. M. Masud and I. Kiringa. Maintaining consistency in a
failure-prone P2P database network during transaction processing.
Proceedings of the 2008 International Workshop on Data management
in peer-to-peer systems, pp. 27–34, 2008.

[11] M. Moser and S. Haridi. Atomic Commitment in Transactional DHTs.
1st CoreGRID Symposium, Aug. 2007.

[12] S. Plantikow, A. Reinefeld, and F. Schintke. Transactions for
Distributed Wikis on Structured Overlays. 18th IFIP/IEEE Distributed
Systems: Operations and Management (DSOM 2007), Oct. 2007.

[13] T. Schütt, F. Schintke, and A. Reinefeld. Structured Overlay without
Consistent Hashing: Empirical Results. GP2PC’06, May 2006.

[14] T. Schütt, F. Schintke, and A. Reinefeld. A Structured Overlay for
Multi-Dimensional Range Queries. Europar, Aug. 2007.

[15] T. Schütt, F. Schintke, and A. Reinefeld. Scalable Wikipedia with
Erlang. Google Scalability Conference, Jun. 2008.

[16] T.M. Shafaat, M. Moser, A. Ghodsi, S. Haridi, T. Schütt, and A.
Reinefeld. Key-Based Consistency and Availability in Structured
Overlay Networks. Third Intl. ICST Conference on Scalable
Information Systems, June 2008.

[17] I. Stoica, R. Morris, M.F. Kaashoek D. Karger, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet application.
ACM SIGCOMM 2001, Aug. 2001.

47

